Drug development and the NFL draft

All opinions are my own and do not necessarily reflect those of Novo Nordisk.

The NFL draft is happening as I am writing this post. And of the many draft-related pieces I’ve read in the past few days, one from Vox.com particularly stood out. The article, by Joseph Stromberg, describes research by Cade Massey and Richard Thaler (here and here) about the skewed and irrational choices often made by teams during trades of draft picks. In essence, teams are likely to pursue a strategy in trading up that suggests they believe they have a much greater ability to forecast the future performance of a given player than is actually the case. Put another way, rather than following a strategy of diversified risk, teams commit to a specific player that they feel they need to get, rather than simply seeing who’s available when they are scheduled to pick and choosing the best player on their draft board.

Historical analysis shows that the difference between various players drafted at the same position is often negligible; on top of that teams who aggressively trade down and gather more picks in the lower rounds generally do better in terms of the value they receive for the money they spend in salaries. One might argue this is an artifact in part of the NFL Rookie salary structure, but even without that, players taken in later rounds will always command smaller salaries. Getting similar value for less money is generally a good thing.

If you’ve read posts from this blog before you know where I’m going. Drafting NFL rookies sounds a lot like developing drugs. Continue reading

The fall and rise of the LEGO Kingdom: A review of “Brick by Brick”

All opinions are my own and do not necessarily reflect those of Novo Nordisk.

When people ask me what I did growing up, they expect me to say “surf.” I know this because when I tell them what I did for fun their next question is always, “What, you didn’t surf?” I didn’t. Still haven’t learned. Instead I did a lot of the things boys all over the US did. I watched TV. I hung out at the mall and at fast food restaurants. And I played with LEGO.

The brick fundamentally hasn’t changed since I was a kid. My son has a bunch and the basic essence is still snapping things together with that satisfying “click,” and the gradual accretion of form and function from individual, generic elements. Kind of like how life evolves, you know? And yet at the same time LEGO has undergone great changes in packaging, themes, toy categories, and target audiences. Today it’s one of the most respected and recognized toy brands in the world. But something I hadn’t realized until reading “Brick by Brick” by David Robertson and Bill Breen is how close LEGO actually came to crashing and burning in the 90s and early aughts, before recovering to once again become a commercial powerhouse.

Continue reading

The innovators dilemma in biopharma part 3. What would disruption look like?

All opinions are my own and do not necessarily reflect those of Novo Nordisk.

h/t to @Frank_S_David, @scientre, and the LinkedIn Group Big Ideas in Pharma Innovation and R&D Productivity for links and ideas

Part 1 is here.

Part 2 is here.

In the previous parts to this series I’ve covered both why the biopharma industry is ripe for disruption, and what the markets might be that could support a nascent, potentially disruptive technology until it matures enough to allow it to supplant the current dominant industry players.  In this final part I’d like to ask what disruption would look like and provide some examples of directions and companies that exemplify what are, to my mind, these sorts of disruptive technologies and approaches. With, I might add, the complete and utter knowledge that I’m wrong about who and what specifically will be disruptive! But in any case, before we can identify disruption, it’s worthwhile to ask what are the key elements of biopharma drug development that serve as real bottlenecks to affecting  human health, since these are the elements most likely to provide an avenue for disruption. Continue reading

Big Data and Public Health: An interview with Dr. Willem van Panhuis about Project Tycho, digitizing disease records, and new ways of doing research in public health

All opinions of the interviewer are my own and do not necessarily reflect those of Novo Nordisk.

One of the huge and perhaps still underappreciated aspects of the internet age is the digitization of information. While the invention of the printing press made the copying of information easy, quick and accurate, print still relied on books and other printed materials that were moved from place to place to spread information. Today digitization of information, cheap (almost free) storage, and the pervasiveness of the internet have vastly reduced barriers to use, transmission and analysis of information.

In an earlier post I described the project by researchers at the University of Pittsburgh that digitized US disease reports over the past 120+ years, creating a computable and freely available database of disease incidence in the US (Project Tycho, http://www.tycho.pitt.edu/) This incredible resource is there for anyone to download and use for research ranging from studies of vaccine efficacy to the building of epidemiological models to making regional public health analyses and comparisons.

Their work fascinates me both for what it said about vaccines and also for its connection to larger issues like Big Data in Public Health. I contacted the lead researcher on the project, Dr. Willem G. van Panhuis and he very kindly consented to an interview. What follows is our conversation about his work and the implications of this approach for Public Health research.

vanPanhuis,Wilbert[brianCohen20131113] (12)_resized

Dr. Willem van Panhuis. Image credit: Brian Cohen, 2013

Kyle Serikawa: Making this effort to digitize the disease records over the past ~120 years sounds like a pretty colossal undertaking. What inspired you and your colleagues to undertake this work?

Dr. Willem van Panhuis: One of the main goals of our center is to make computational models of how diseases spread and are transmitted. We’re inspired by the idea that by making computational models we can help decision makers with their policy choices. For example, in pandemics, we believe computational models will help decision makers to test their assumptions, to see how making different decisions will have different impacts.

So this led us to the thinking behind the current work. We believe that having better and more complete data will lead to better models and better decisions. Therefore, we needed better data.

On top of this, each model needs to be disease specific because each disease acts differently in how it spreads and what effects it has. In contrast, however, the basic data collection process that goes into creating the model for each disease is actually pretty similar across diseases. There is contacting those with the records of disease prevalence and its spread over time, collecting the data and then making the data ready for analysis. There’s considerable effort in that last part, especially as Health Departments often do not have the capacity to spend a lot of time and effort on responding to data requests by scientists.

The challenges are similar–we go through the same process every time we want to model a disease–so when we learned that a great source of much of the disease data in the public domain is in the form of these weekly surveillance reports published in MMWR and precursor journals, we had the idea: if we digitize the data once for all the diseases that would provide a useful resource for everybody.

We can make models for ourselves, but we can also allow others to do the same without duplication of effort. Continue reading

Can studies of bosses help us figure out how good sports managers are?

All opinions are my own and do not necessarily reflect those of Novo Nordisk.

The world would be a simpler place, although maybe a much more boring and predictable one, if every aspect of performance could be measured directly. My completely unoriginal thought here is that one of the reasons sports appeal to so many people is because they provide clarity. In a confusing, complex world where the NSA is sucking up our information like a Dyson vacuum sucks feathers in a henhouse, and we’re told this is for our own good, clarity can be refreshing.

The simple view of an athlete’s performance is that all the accolades (or jeers), all the milestones (or flops), all the accumulated statistical totals (or lack thereof) are because of that athlete’s ability: his or her drive, passion, training, and natural ability. And that performance is measured via the statistics each sport collects and chooses to honor and promote. Performance is right there, what more do you need? What more could you want? Continue reading