Major League Baseball should be all over the quantified self movement

All opinions are my own and do not necessarily reflect those of Novo Nordisk

Baseball players break down.  Their performances fluctuate.  As a group there are some interesting generalities with respect to how pitching, hitting and fielding change with age.  But the error bars are huge.  There are many things we still don’t know about baseball players, about why one prospect hits the ground running and another flames out.  And we also don’t know if there is any way to know, since the task of putting together the skills needed to play major league baseball may be one of the most complex of the major sports, and understanding complexity is hard.

But it seems worthwhile to give it a try.

The Mystery of the Missing Ligament

Let’s talk about R.A. Dickey for a minute.  Not because he’s a highly interesting human being, although he is.  And not because he’s a knuckleballer, which is fun and interesting due to rarity and the entertaining sight of six foot athletes flailing at baseballs traveling with the flight path of a drunken small-nosed bat.  But rather because he was drafted in 1996 in the 1st round by the Texas Rangers, and only during his physical workup was it discovered that he was missing a key ligament in his arm.  The Ulnar Collateral Ligament (UCL), to be exact.  Without which, it is assumed, a pitcher cannot pitch. Continue reading

Fielding percentage for UK surgeons

All opinions are my own and do not necessarily reflect those of Novo Nordisk.

Last week I posted on how our measurements of defense in baseball have become a lot more sophisticated, and how that gave me hope for the evaluation of innovation.  If baseball, one of the most tradition-bound of US sports can adopt to new metrics, surely business can too.

I was reminded of this with the publication of a recent article about the National Health Service (NHS) in the United Kingdom and their plan to publicize the surgical success rates of clinicians across their country.  Surgeons in eight different specialities will have their mortality rates for specific procedures, length of hospital stays post surgery, and other elements published in tables for anyone to access.  The first group to have this information released is vascular surgeons.

A fascinating aspect of how this is being done is that publication of one’s rates is voluntary, but if a surgeon chooses not to have his or her rates published, that surgeon will be named.  It’s not quite putting people into stocks in the public square, but it is definitely a form of public shaming meant to increase participation.

Nevertheless, six surgeons have opted out and been named.  Game theory might predict these are surgeons on the low end of the measured metrics, who are taking a calculated risk that the negatives associated with not publishing their rates are less than the negatives that would come with disclosure of their rates.  But that’s not the case.  The NHS has stated that none of these surgeons lie outside the normal range for the reported metrics.

Instead, these doctors are protesting that the metrics are not measuring the right things.   They suggest the metrics don’t take into account the subtleties involved in surgical cases, how procedure names alone don’t properly capture how difficult or easy a procedure might be for a given patient.  Are there comorbidities?  Is a patient in generally poor health?  Is a surgeon one who specializes in tricky, difficult cases which would therefore lead to a lower success rate even though the surgeon him or herself might be highly skilled and effective?  Could these metrics scare new surgeons away from performing more difficult procedures?

This echoes the debate about defense in baseball, and whether standard metrics such as fielding percentage are the best for measuring defensive ability, or if more elaborate measures better reflect reality.

Still, while I agree with the viewpoint that we should always try to improve metrics, I also think the NHS is doing the right thing.  I think in this case the proper analogy might be baseball defense back at the time before the invention of fielding percentage.  In the practice of medicine world-wide there is a surprising lack of information about measures like success rates and efficacy.  As Sir Bruce Keogh said to the BBC: “This has been done nowhere else in the world, and I think it represents a very significant step.”  To take another quote from the article, Professor Ben Bridgewater commented, “We’ve been collecting data on cardiac surgery since 1996 and we’ve been publishing it at individual surgeon level since 2005, and what we’ve seen associated with that is big improvements in quality: the mortality rates in cardiac surgery today are about a third of what they were ten years ago.” That which we don’t measure, we can’t improve.

In the US, that idea is becoming more prominent.  Recent articles in Time and the New York Times have highlighted how transparency is lacking in the United States healthcare system, and the Obama Administration’s emphasis on comparative effectiveness is another thrust in that direction.  What the NHS is doing is a great model and a great start, and I hope they continue to both make these aspects of healthcare more transparent and work to refine their metrics so that they accurately reflect the difficulty of practicing good medicine.

Cheetahs hunting redux: the next step in measuring baseball defense?

I had another thought about the collars that were used to measure cheetah hunting behaviors.  For a summary that is not behind a paywall, see here.  How long will it be before tools like these are used to measure baseball players, playing defense on the field?  Tools like FIELDf/x quantify the behavior of baseball players from an external viewpoint.  Sportvision’s cameras record elements of the game like positioning, how quickly a defender moves, the kind of jumps he takes when getting to (or missing) the ball, and overall range.  This allows a much clearer view of defender territory, ability to reach difficult balls, and general quality.

Now, what if that were combined with the kinds of tools that were used to measure cheetahs?  As the authors of the article point out, the collars they designed could record “some of the highest measured values for lateral and forward acceleration, deceleration and body-mass-specific power for any terrestrial mammal.”  If it can do that for cheetahs, it can certainly do that for Brendan Ryan and Mike Trout, much less Derek Jeter or Raul Ibanez.  By the way, this would obviously not be implemented as a collar.  You don’t have to drug and tag shortstops.  At least not for these purposes.

Instead, these monitoring devices would be attached to the body, and possibly in multiple places, to capture kinesthetics.  Now, one might say, can’t all this data just be captured by  image capture from the Sportvision feed, and algorithmically extracting things like acceleration, body positioning, etc?  Quite possibly; I don’t know enough about that technology.  But what about actions taken on fields which are not equipped with Sportvision cameras, which is to say, most of them?

That might end up being the sweet spot for implementing this technology, as an adjunct to training, coaching and scouting.  Being able to measure how quickly a high school shortstop actually reacts to the batted ball, based on his lateral acceleration and ability to accelerate/decelerate would provide a more proximal measure of athleticism when making scouting evaluations.  It can also allow quantification of both areas for improvement, as well as a measure of improvement during coaching.  And using these kinds of monitors can also help answer questions on what really is important for defense, based on a comparison of proximal, immediately measured body motions and more distal metrics such as are measured by things like UZR.

Like any of these kinds of quantified self tools, though, it remains to be seen how useful this extra data will be.  However, for the savvy organization at any level, I think these kinds of tools are worth thinking about.

Why Derek Jeter being a lousy defensive shortstop gives me hope for innovation in industry

All opinions are my own and do not necessarily reflect those of Novo Nordisk

Hat tip to Jeff Sullivan of Fangraphs.com for the article that sparked this idea.

It used to be we knew what a good defender was in baseball.  And Derek Jeter was a good defender.  He had balletic grace, he scooped up balls and threw them with flair and panache, with an all-but-patented jump-throw that made announcers gush and coaches shake their heads in awe.  He was the complete package, a player who could hit, field, throw and lead, a first ballot hall of famer.

Except that, when you look closely, it turns out his defense is lousy.

Defense used to be measured (still is, by many) via the eye test.  How does a player look when catching balls in play?  And this was backed up by the statistic of fielding percentage.  How many balls did a player field cleanly?  It makes intuitive sense.  The more balls a player fields correctly, why, the better defender he must be, right?

Except that’s only part of defense.  It’s nice if a player can catch a ball well.  But what about balls that get by him?  In the last decade or so, baseball analysts began studying the concept of range.  All things being equal, the realization came, range is actually more important than errors or how a player looks.  It’s one thing to catch everything that gets to within a few steps to the shortstop’s right and left.  It’s another thing entirely to catch 98% of everything spanning the third baseman’s left pocket to the grass on the far side of second base.  When you consider the huge number of balls that are hit in the vicinity of the shortstop every season, and the relative value of a hit versus an out, those extra feet of range translate into saved runs.  And saved runs contribute to wins.

Just as an aside, current defensive metrics suggest Derek Jeter has cost the Yankees over a hundred runs relative to an average shortstop over his career.  Still a hall of famer.  Not a great defender.

However, those saved runs and that increased range come with a cost.  By definition, the best shortstops will have more chances to make a fielding play, and if you make more chances, you are likely to make more errors.  Indeed, the very fact that a great fielding shortstop is able to get to more hard hit balls on the edge of his range may well lead to a lower overall fielding percentage as well as a higher number of errors.

Fortunately for those shortstops, baseball teams are getting smarter and are realizing the tradeoff is worth it.  Scouting reports regularly cite range in addition to how a player looks, and fielding percentage is low on the list of statistics an organization cares about in evaluating a player.

And that gives me hope for innovation in two ways.  The first is the point above about the eye test.  We trust what we see and feel.  However, that’s not always the complete story.  Often in trying to implement innovation, there’s a gut feeling by those doing the evaluation–this is innovation, that isn’t, I can tell.  Only anecdotal evidence suggests that no, in fact, often people can’t tell.  Just ask Kodak.  However, if baseball can come to realize that the eye test, while important, is just one part of the evaluation package, industries can also learn that lesson and look for other, possibly less subjective ways to measure innovation.

The second relates to two contradictory things that are often said about innovation, sometimes one right after the other.  We need to innovate.  And we need to de-risk it to make sure that it will work.  Unfortunately, there can be no real innovation without the very real risk of failure.  In an interview with Wired magazine, the inventor James Dyson is described as having worked his way through 5127 prototypes of his bagless vacuum cleaner before hitting success.  But if baseball can come to realize that a decreased probability of fielding success is actually a good thing when it means a shortstop is reaching defensive heights few others can, maybe industries can finally realize that failure, in the right cause, is something to be celebrated and embraced.